The effects of cannabinoids on fear extinction recall and the underlying brain circuitry in humans

Christine A. Rabinak, Ph.D.

Research Assistant Professor
Department of Psychiatry, University of Michigan

Arizona State University
Center for Applied Behavioral Health Policy
Research and Practice Colloquia
October 3rd, 2013

Disclosures: None
• Special thank you to the Center for Applied Behavioral Health Policy and to the Researchers for inviting me to speak today.

• Very special thank you to Brandy Huseman for organizing today’s event and for her generous support and time in helping plan my visit.
Learning Objectives

• Understand fear extinction and how it is used to model exposure-based therapies.

• Understand the neural mechanisms underlying extinction learning and recall.

• Understand how the cannabinoid system is involved in extinction of fear memories.

• Discuss how the cannabinoid system may be a potential pharmacological target to enhance the learning during exposure sessions and what this may mean for advancements in treatment.

• Discuss the next steps in research with cannabinoids as a potential cognitive enhancer for extinction-based therapies.
Background

- Anxiety Disorders
 - Failure to appropriately inhibit or extinguish fear
 - Exposure-based therapy
Background

- Pavlovian Fear Extinction
 - Models underlying dysfunction in anxiety disorders

Background

- Pavlovian Fear Extinction
 - Basic neural circuitry that regulates fear extinction
 - Ventromedial prefrontal cortex [vmPFC] and hippocampus [HIPP]
 - Dysfunctional in anxiety disorders

vmPFC = cognition; fear extinction recall
HIPP = memory formation; fear extinction recall
AMYG = emotional learning and responding
‘Healthy’ Fear Extinction Recall

A. Conditioning
 - Day 1: Extinction Learning
 - Day 2: Recall

B. Conditioning vs. Extinction Recall
 - 8 CS+E, 8 CS+U
 - Amygdala
 - Hippocampus
 - vmPFC

Milad et al. (2007). Biological Psychiatry, 62: 446-454
PTSD and Impaired Fear Extinction Recall

• Deficient vmPFC-HPC during Extinction and Recall of Extinction Memory in PTSD
Background

• Pharmacological ‘Enhancers’ of Extinction Learning
 – Deletion of endocannabinoid CB1 receptors impairs extinction [Marsicano et al. 2002; Kamprath et al. 2006]
 – Extinction increases endocannabinoid levels (e.g. anandamide) [Marsicano et al. 2002]
 – Endocannabinoid-reuptake inhibitors facilitates extinction [Chhatwal et al. 2005]
 – Inhibition of endocannabinoid-degrading enzymes [e.g. FAAH] facilitates extinction [Gunduz-Cinar et al. 2012]

• However, the role of cannabinoids on the retention of extinction memory and its effect on the underlying neural circuits in humans is unknown.
Can cannabinoids facilitate fear extinction in humans?

Hypothesis: Pre-extinction administration of an acute dose of THC will facilitate extinction of conditioned fear responses compared to placebo (PBO) in humans.
Experimental Paradigm

Day 1
Fear Acquisition

Day 2
Extinction Learning
7.5 mg THC or PBO
120 min

Day 3
Extinction Memory Recall Test

8 x CS+E w/US
8 x CS+U w/US
15 x CS +E
15 x CS+U
15 x CS-
15 x CS +E
15 x CS-
20 x CS +E
20 x CS+U
20 x CS-

- Randomized, double-blind, placebo-controlled between-subjects design
- Acute pharmacological challenge of oral dronabinol [THC = 14] or placebo [PBO = 15] in healthy adult volunteers
Behavioral Results

THC does not affect within-session extinction learning to the CS+E

THC decreases SCRs to the CS+E compared to PBO
Participants that had received PBO during extinction learning exhibited spontaneous recovery of fear to a CS that was previously extinguished (CS+E), whereas THC attenuated spontaneous recovery of fear.

THC did not affect within-session extinction learning, but only influenced the ability to successfully recall extinction memory when compared to placebo, suggesting that THC affects the ability to maintain and/or successfully retrieve extinction memory.

Pre-extinction administration of THC facilitates extinction of conditioned fear in humans.

How does THC affect the underlying neural circuitry involved in fear extinction?
How does THC affect the underlying neural circuitry involved in fear extinction?

Cannabinoid modulation of prefrontal–limbic activation during fear extinction learning and recall in humans

Christine A. Rabinak a,⁎, Mike Angstadt a, Maryssa Lyons a, Shoko Mori a, Mohammed R. Milad b, Israel Liberzon a, K. Luan Phan a,c

a Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, United States
b Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, United States
c Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60608, United States
Hypotheses

Extinction Learning:
- During early extinction the CS+E will elicit conditioned fear responses (e.g. SCRs), but with continued presentations of the CS+E in the absence of the US SCRs to the CS+E will diminish.
- THC will not affect extinction of SCRs to the CS+E (versus CS-).
- During early extinction learning there will be AMYG activation to the CS+E (versus CS-). THC will not affect AMYG reactivity to the CS+E.

Extinction Recall:
- Relative to PBO, THC will decrease SCRs to the CS that was previously extinguished (CS+E).
- Relative to PBO, THC will enhance regional activation in the vmPFC and HIPP to the CS+E (versus CS+U).
- Relative to PBO, THC will increase functional coupling between the vmPFC and HIPP to the CS+E.

Pre-extinction administration of THC enhances recall of fear extinction in healthy humans, which is mediated via increased activation and functional connectivity of the vmPFC and HIPP.
fMRI Experimental Paradigm

- Randomized, double-blind, placebo-controlled between-subjects design
- Acute pharmacological challenge of oral dronabinol [THC = 14] or placebo [PBO = 14] in healthy adult volunteers
- Functional data were processed and analyzed using SPM8
THC does not affect within-session extinction learning to the CS+E

Both groups demonstrated equivalent levels of extinction learning.
THC attenuates AMYG reactivity to the CS+E during early extinction.
Extinction Recall Results

No significant difference in SCR to the CS+E during extinction recall between PBO & THC

Both groups demonstrated successful extinction recall to the CS+E
THC increases regional activation in vmPFC & HIPP to the CS+E (>CS+U) during extinction recall
Functional Connectivity Analysis

- Functional connectivity was conducted with generalized psycho-physiological interaction (gPPI) analyses in SPM8.

THC increases functional coupling between the vmPFC and HIPP to the CS+E during extinction recall.

vmPFC ‘seed’

THC > PBO: CS+E > CS+U

x = -30

x = 30
Summary of fMRI Study

- THC did not affect within-session extinction learning, but did attenuate AMYG activation to the CS+E during early extinction.

- Both groups displayed significantly smaller SCRs to the CS+E compared to the CS+U during extinction recall; however, there was no significant difference between the THC and PBO groups.
 - THC may have reduced within group variability in extinction recall success

- THC increased regional activation within the vmPFC and the left HIPP and increased vmPFC-HIPP functional coupling to the CS+E (> CS+U) during extinction recall compared PBO.

⇒ Pre-extinction administration of THC modulates the underlying neural circuits involved in fear extinction in humans.
Conclusions & Future Directions

• Can cannabinoids facilitate fear extinction?
 – Maybe...
 • Conflicting behavioral results with the use of THC between our studies
 – Differential sensitivity to the effects of THC between individuals
 – ‘Floor Effect’
 – THC may not be effective in a non-clinical population (e.g. DCS studies)
 – Underpowered
 – SCR may not be sensitive to the effects of THC
 – Genetic influences**

Heitland et al. (2012). Translational Psychiatry, 2(e162)
Conclusions & Future Directions

• Can cannabinoids facilitate fear extinction?
 – Maybe…
 • Conflicting behavioral results with the use of THC between our studies
 – Differential sensitivity to the effects of THC between individuals
 – ‘Floor Effect’
 – THC may not be effective in a non-clinical population (e.g. DCS studies)
 – Underpowered
 – SCR may not be sensitive to the effects of THC
 – Genetic influences**
• Other cannabinoid compounds/targets
 – Cannabidiol (CBD) given before or after extinction learning in healthy volunteers has been shown to facilitate consolidation of extinction learning (Das et al 2013).
 – Endocannabinoid re-uptake/degradation inhibitors (FAAH inhibitor)
Conclusions & Future Directions

• How do cannabinoids affect the neural circuitry involved in fear extinction?
 – THC attenuates AMYG activation during extinction learning to the fear cue and increases vmPFC-HIPP activation and functional coupling during extinction recall.

• AMYG:
 – Activation of CB1 receptors on GABAergic interneurons with the AMYG, which decreases GABAergic transmission, thus leading to the potentiation of glutamaterigic “extinction” pathways; and/or
 – Activation of CB1 receptors on glutamaterigic neurons within the AMYG, which decrease glutamate transmission, thus leading to a de-potentiation of “fear” pathways

• vmPFC:
 – Activation of CB1 receptors in vmPFC induces neuronal plasticity, which increases top-down inhibition of fear-output neurons in the AMYG

• HIPP:
 – Activation of CB1 receptors in HIPP may support long-term extinction memory formation via enhanced glutamaterigic neurotransmission
Conclusions & Future Directions

• Can we ‘rescue’ behavioral and neural deficits in fear extinction recall in PTSD with an acute dose of THC?

• Prompt investigation of the cannabinoid system as a pharmacological target in exposure

 – What are the benefits?

 – What are the potential pitfalls/considerations?
Acknowledgements

Collaborators
• K. Luan Phan, MD
• Israel Liberzon, MD
• Mohammed R. Milad, PhD
• James Abelson, MD, PhD
• Chandra Sripada, MD, PhD

Research Staff
• Mike Angstadt*
• Maryssa Lyons
• Shoko Mori

UM fMRI Laboratory
UM Department of Psychiatry
Michigan Institute for Clinical & Health Research (MICHR)

Funding: National Center for Research Resources (UL1RR024986); National Center for Advancing Translational Sciences (2UL1TR000433); National Institute of Mental Health (1R21MH093917-01A1).

*FMRI Wizard